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STABILITY OF PLANE-PARALLEL ELECTROHYDRODYNAMIC FLOWS IN 

A LONGITUDINAL ELECTRIC FIELD 

A. M. Sagalakov and K. A. Ser~eev UDC 539.19 

In recent vears there have been significant developments in a new branch of electromag- 
netic hydrodynamics, electrohydrodynamics. Theoretical studies in this field have been stim- 
ulated by various technological applications [I-5]. Functioning electrohydrodynamic pumps, 
generators, and dc transformers have now been constructed. However, further development of 
electrohydrodynamic (EHD) devices is being hindered by the incomplete, and sometimes, even 
contradictory, nature of existing concepts involving the principles of electrophysics and 
the hydromechanics of weakly conducting liquids and gases [2]. One may say that the least- 
studied area involves questions of stability and turbulence of EHD flows. The present study 
will analyze the stability of plane-parallel to EHD flows in a longitudinal electric field 
with respect to small perturbations. 

We choose as a characteristic length the quantity lo, equal to one-half the channel 
width, and select as the characteristic velocity Vo. Let Eo be the intensity of the exter- 
naliu apvlied electric field. We will measure electric field intensity, space charge den- 
sity, time, pressure, and current density in units Eo, Oe, /o/Vo, 0V~, K0e, Eo (where 0 is 
the liquid density and K is the ion mobility coefficient). Then the system of eauations 
describing the EHD of a viscous incompressible fluid can be written in dimensionless form as 

Ov/Ot + (vv)v = - -VP  + ( i /Re)Av ~ Eu a peE + rvE2 ;  (1) 

div v = 0; (2) 

rot E = 0; (3) 

div E = Reape; (4) 

OpJOt +(i/Ma) div ] = 0; (5) 

j = pc(May + E) - -  ( i / R e ~ ) v p  e. ( 6 )  

Here v is velocity; E, electric field intensity; ~e, space charge density; j, current den- 
sity; Re, Reynolds number; Re a = pe/o/eeoEo, electrical Reynolds number; M a = Vo/KEo, elec- 
tric Mach number; Rei = K/oEo/D, ionic Reynolds number; Eu a = 0eEo/o/0V~, electrical Euler 
number; F = (e -- zo)E~/2oV~, electrical pressure number (where e is the dielectric Dermit- 
tivitv of the fluid and D is the diffusion coefficient). 

The Navier--Stokes equation (I) considers the effect of the electric field on the charged 
liquid (the term EuaoE) and the force acting on the weakly polarized dielectric in an 
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inhomogeneous electric field (the term FvE2)- The incompressibility condition gives Eq. (2). 
Equation (4) is one of the electrodynamics equations. In EHD effects Droduced by magnetic 
induction are neglected. The electric field is assumed to be a potential field, as expressed 
by Eq. (3). The law of conservation of charge is expressed by Eq. (5), wh@le Eq. (6) expresses 
Ohm's law. | 

Ohm's law (6) considers the conduction current, convection current, a~d self-diffusion 
current. The electrical similarity criteria M a and Rei define the contributions of diffu- 
sion and convective components to the current density. If the quantity Rei is large, then 
the diffusion component of the current may be neglected; if M a is small, then the convective 
component may be neglected. 

We note that EHD phenomena are rarely found in pure form, Magnetohydrodynamic (MHD) 
processes can be neglected when the characteristic electrical charge relaxation time is much 
lar~er than the characteristic magnetic diffusion time. The interactions are then electro- 
hydrodynamic, and the magnetic induction is negligibly small, so that charge conservation 
effects are significant [I]. 

We will consider the steady-state motion of a charred fluid in a planar channel under 
the action of an external �9 constant electrostatic field and a pressure gradient. We will 
assume that the electric field is directed along the x axis of a Cartesian coordinate system. 
The y axis is perpendicular to the channel walls. The wall coordinates are then y = +I. We 
will assume that the quantity ~p/~x is constant. Then the expression for velocity can be �9 
written in the form [6] 

U ----- u l ( t  - -  y 2 ) ,  u2(t  __ ln cos By/ln cos B), (7 )  

Be OP2 Ox'  ~ReEua . . ( t ) c ~  ' fRe~Hea 
ul - -  u2 = 2 In B = y - - ~  Pe0. 

H e r e  Peo i s  t h e  d i m e n s i o n l e s s  c h a r g e  d e n s i t y  on  t h e  c h a n n e l  a x i s  a t  y = 0 .  We c h o o s e  f o r  Vo 
t h e  h i ~ h e s t  f l o w  v e l o c i t y  a t t a i n e d  on t h e  c h a n n e l  a x i s .  Then  Eq.  (7)  c a n  b e  w r i t t e n  a s  

U = 6(i -- y2) + (i -- 6)(I -- In cos By~in cos B). (8) 

The value of the parameter 6 varies from zero to unity depending on the ratio between the 
electrical and mechanical forces. 

The value of the induced transverse electric field is given by the expression [6] Ey = 
(2/Rei)B tan By. 

The charge density distribution over the channel section is given by [6] pe = 0co/COS 2 
By. Hence we find the mean charge density over the channel section 

P, = Pc0 tg  B/B. 

I c  i s  e v i d e n t  f rom t h i s  e x n r e s s i o n  t h a t  t h e  p a r a m e t e r  B may v a r y  o v e r  a r a n g e  f rom 0 t o  v / 2  
( a n d  i t  i s  f o r  t h i s  r e a s o n  t h a t  t h e  a r g u m e n t  o f  t h e  l o g a r i t h m  i n  E q s .  ( 7 ) ,  (8)  i s  a l w a y s  
vositive). 

The case 6 = I corresponds to Poiseuille flow. At 5 = 0 the flow has a completely 
pondermotor nature, i.e., it is produced solely by electrical forces: 

U ---- t - -  In cos By~In cos B. (9)  

It is interesting that at small B the electrical forces form a velocity profile practically 
identical to the velocity profile of Poiseuille flow. At B values close to ~/2(B > 1.5), the 
velocity profile (9) in the central portion of the channel is smoothed, and near the channel 
walls the velocity vanishes rapidly. 

We will analyze the stability of such a stationary flow with resnect to small perturba- 
tions, 

Linearizin~ Eqs. ( 1 ) - ( 6 )  with respect to small perturbations, we obtain the followin~ 
system: 

~ v__~. ~ 
v'  ~t + (vV) + (v'V) v - vp' + Av' + Eua(~aE' + E~) ~- 2rV(EE'); 

div v ' : : 0 ;  

ro tE ' - - - - -0 ;  

(lo) 

(11) 

(12) 
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div E'  =: Reap,: ( 1 3) 

r 

aPea--T l - j, (14) ~- ~adlv  =0 ;  

j '  = p'e (May + E) + pe ( M a v ' +  E')  - -  J - -  vo~ (15) 
Rea ' ,  " 

The p r ime  d e n o t e s  s m a l l  p e r t u r b a t i o n s  h e r e .  We w i l l  s e e k  a s o l u t i o n  o f  s y s t e m  ( 1 0 ) - ( 1 5 )  in  
the  fo rm o f  e l e m e n t a r y  wave s o l u t i o n s .  

From Eqs.  ( 1 0 ) ,  ( l l ) ,  u s i n g  Eqs.  ( 1 2 ) ,  ( 1 3 ) ,  we f i n d  the  d i f f e r e n t i a l  e q u a t i o n  

L [vI =-- F~-ff; k S u - -  ( U - - C )  - -  k 2 v - - - - v @ 2  = 

�9 d 2 ' ( dO" \ ,, d2Ey ,'] Eua [ ~z(_j~__k~IdE~__k~Ey _ , 

From Eqs. (14), (15), using Eqs. (11)-(13), we obtain a second differential equation 

Re~ ~ - k~ - k~ eE; e~G e'~e~ eE~ 
-- - -~-y - - ia  i - k M a ( U - - c  ) +gWj ~._k2 E'~- - iaMaT'~y '~V du ~ dy = 0 .  

E q u a t i o n s  ( 1 6 ) ,  (17) compose a s y s t e m  o f  e i g h t h - o r d e r  complex  e q u a t i o n s  in  the  complex  a m p l i -  
t ude  o f  t h e  y - c o m p o n e n t  o f  t he  v e l o c i t y  p e r t u r b a t i o n  v and the  complex  a m p l i t u d e  o f  t he  x -  
component  o f  the  e l e c t r i c  f i e l d  p e r t u r b a t i o n  E ' x .  We n o t e  t h a t  the  d i m e n s i o n l e s s  p a r a m e t e r  
F, which  d e s c r i b e s  t he  a c t i o n  o f  e l e c t r i c a l  f o r c e s  on a weak ly  p o l a r i z e d  d i e l e c t r i c ,  does  
no t  a p p e a r  in  t he  e q u a t i o n s  o f  l i n e a r  t h e o r y ,  Eqs.  ( 1 6 ) ,  ( 17 ) .  We w i l l  d e f i n e  the  f i e l d  p e r -  
t u r b a t i o n  o u t s i d e  t he  r e g i o n  c o n t a i n i n g  s p a c e  c h a r g e  and c o n s i d e r  the  c o n t i n u i t y  o f  t he  t a n -  
g e n t i a l  component  o f  f i e l d  i n t e n s i t y  and the  normal  component  o f  the  i n d u c t i o n .  We then  
o b t a i n  b o u n d a r y  c o n d i t i o n s  f o r  E ' x :  

~E~ (~) (18) dy -k kE~(l) = 0; 

dE' x ( - -  t) kE'x ( - -  i) = 0, (19) 
dy 

,,,L J_ _J__ l 
O O/ O,a # 

Fig. 2 
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for the case where the dielectric permittivlty of the channel walls coincides with that of 
the fluid. 

Two other boundary conditions for the field are found from the requirement that the 
normal component of the current must vanish on the fluid--wall boundary. These conditions 
have the form 

Re--~. - -  k= - -  E~ - -  k s E= = 0 at y = -4- I. ( 2 0 )  
�9 \dy / dy dy 

The problem of stability study has now been reduced to analysis of the eigenvalues of system 
(16), (17) with boundary conditions (19), (20) and boundary conditions of adhesion and imper- 
meability for the velocity. This task presents difficulties well known in the theory of 
hydrodynamic stability of viscous liquid flows~ Moreover, the present problem contains a 
lar~er number of similarity criteria, and, of special importance, system (16), (17) is of 
much higher order than the corresponding system of regular hydrodynamics. The problem is 
also much more complex than its analo~ in magnetic hydrodynamics at finite magnetic Reynolds 
number values. 

The stability analysis becomes simpler if we assume that the quantity Rei is large. In 
this case Eq. (17) can be written as 

( de ) M e  d~E~ 
d-~-- k~ E ~ - - - -  I H - M a ( U - - c ) ~  y' (2])  

and Eq. (16) takes on the form 

L[v]-- r d~ f-k2 dE= "dy " (22) 

D i f f e r e n t i a t i n g  Eq. (21),  we reduce system (21),  (22) to a modi f ied Orr--Son~nerfeld equat ion 

iEuaMad [ i d'Ey ] 
v (23) L[v]= a. Ready i.~Ma(U_c) dY 2 . 

Finally, if the dimensionless parameter P = 2EuaMaB~/Rea Rei is still small, the right side 
of Eq. (23) may be neglected. Equation (23) then transforms to an Orr--Sommerfeld equation. 
The possibility of neglecting the right side of Eq. (23) at a low value of the parameter P 
was demonstrated in numerical experiment with 5 = 0.5, M a = 10 -3, B = I. As long as P < 
0.002 the critical Reynolds numbers differ from their limiting value at P = 0 by not more 
than 5.5%. 
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The electric field creates a definite form in the velocity profile of the basic flow, 
and thus has a significant effect on its stability. It is this property of the electric 
field which is dominant in the simplifying assumptions made above. In the general case the 
direct action of the field on flow velocity pulsations may also prove significant. However, 
detailed consideration of this electric field interaction mechanism will, generallv speaking. 
require study of the complete system (16), (17). 

In the present study, we have examined the electric field effect on flow stability 
related to formation of a velocity profile of given iorm. The problem of eigenvalues for 
the Orr--Sommerfeld equation with velocity profile (8) was solved using the differential 
drive method [7]. In accordance with Squire's theorem the original three-dimensional prob- 
lemwasreduced to the equivalent two-dimensional one, so that in the equation L[v] = 0 ~ = k. 

In Fig. I critical Reynolds number Re, values are shown as functions of the parameter 
(curves I-4 correspond to B = 0.3, 0.7, I, 1.3). 

The largest Re, values correspond to purely pondermotor flow (6 = 0). With increase in 
6, the values of Re,, as canobe seen from Fig. I, decrease monotonically to the Re, value 
corresponding to Poiseuille flow (Re, = 5772). Marked flow stabilization is attained at 
B 91. At low B the critical Reynolds numbers differ insignificantly from Re, for Poiseuille 
flow at all 6. This result could have been predicted earlier, since at low B, velocity pro- 
file (8) is practically no different from that of a Poiseuille flow. 

Figures 2 and 3 show the dependence of X, (the critical phase velocity) and k, (the 
critical wave number) on 6 (curves I-4 correspond to B = 0.3, 0.7, I, 1.3). It is character- 
istic that with increase in the relative contribution of electrical forces to the main flow 
the quantity X, decreases. 

Of special interest is the ponderomotive flow, produced solely by electrical forces (6 = 
0 in Eq. (8)). The dependence of Re, and k, on B for that case are shown in Fig. 4 (curves 
I, 2). With increase in B the quantity Re, increases monotonically, and as B + ~/2, Re, § ~. 
A minimum in k, is achieved at B ~1.3. The value of k, then increases, which corresponds to 
the character of the problem at B values close to ~/2. At such B values a new characteristic 
dimension ~pp~ars -- the dimension of the region over which the velocity decreases from values 
close to unity to zero. The quantity k, must be inversely proportional to this dimension. 
Therefore, it could be predicted beforehand that the quantity k, will increase beginning at 
B values at which the flow takes on a boundary layer character. 

Figure 5 shows an example of the neutral curve for ponderomotive flow at B = 1. 

The analysis performed reveals that an external longitudinal electric field stabilizes 
the plane-parallel flow of a weakly conductive charged fluid. The effectiveness of this sta- 
bilization depends on the value of the space charge and the relationship between the compo- 
nents of flow velocity produced by the pressure gradient and ponderomotive forces. With in- 
crease in space charge the ponderomotive forces at the channel walls increase. At a suffi- 
ciently high electric field intensity, this leads to equalization of the velocity profile in 
the flow core and an increase in the velocity gradient at the channel walls. Such action of 
the electric field causes an increase in critical Reynolds number, at least while the trans- 
verse electric field induced by the fluid space charge remains sufficiently small. 

We note that in the past it has been the stability of equilibrium states in charged 
liquids which has been studied almost exclusively, and in many cases it has been found that 
the electric field exerts a destabilizing influence. 

The results obtained herein may be used to evaluate changes between laminar and turbu- 
lent flow regimes in EHD pumps and to analyze the EHD method of boundary-layer control in a 
gas. 
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EXPERIMENTAL INVESTIGATION OF THE INTERACTION 

BETWEEN THERMALS 

T. N. Anokhina, B. I. Zaslavskii, 
and I. M. Sotnikov 

UDC 532.517.4 

Several results of investigations into the interaction between two thermals which are 
formed during the ascent of initially spherical volumes of a gas which is lighter than the 
external medium are presented in this paper. It is known that, during their ascent, such 
thermals are transformed into circular vortices and, moreover, the light gas passes into 
their toroidal cores [I-4]. The processes involved in the interaction at various different 
stages during this transformation have been investigated in the work which is being reported. 

I. Let us consider the interaction between two thermals. It is assumed that they are 
formed as the result of the sudden synchronous or nonsynchronous emergence of two equal free 
spherical volumes with an effective radius Ro, filled with a gas with a density Pl when the 
density of the external atmosphere is Po. Let L be the distance between the centers of the 
volumes, T be the time interval separating the moments when the first and second thermals 
emerge, H be the height, h be the height at which the thermals merge or at which they acti- 
vely interact, g be the acceleration of free fall, and ~ = (po -- pl)/po be the relative drop 
in the density. If the effect of viscosity is neglected and it is assumed that the weight 
deficit F = QSgpo [2], the distance L, and the time interval T are the main parameters deter- 
mining the motion being considered, we obtain from dimensional analysis that 

h o = h O ( L  o, ~o), To = TO(LO, ~o~, ~ = = d R / d H ;  ( 1 . 1 )  

h ~ = h/Ro, T O = = T ~  %~R0, L ~ = L/Ro,  ( 1 . 2 )  

g ~ = g[Ro ,  ~o =T]/r~g/Re,  

w h e r e  T i s  any c h a r a c t e r i s t i c  t i m e ,  b e t w e e n  t h e  s t a r t  o f  t h e  m o t i o n  and t h e  moment o f  m e r g i n g ~  
f o r  e x a m p l e ,  ~ i s  t h e  a p e r t u r e  a n g l e ,  and R i s  t h e  r a d i u s  o f  t h e  a x i a l  p e r i p h e r y  o f  t h e  c o r e  
o f  t h e  v o r t e x .  

W i t h  s u c h  an a p p r o a c h ,  t h e  d i m e n s i o n l e s s  p a r a m e t e r s  d e t e r m i n i n g  t h e  f l o w  a r e  L ~ and T ~ o r  
j u s t  L ~  when t ~ = 0 .  I n  t h e  l a t t e r  c a s e  h ~ = h ~ 1 7 6  T ~ = T ~ 1 7 6  The e x p l i c i t  d e p e n d e n c e  
o f  t h e  e q u a t i o n s  o f  m o t i o n  and t h e  b o u n d a r y  c o n d i t i o n s  f o r  t h e  p r o b l e m  on ~ i s  e l i m i n a t e d  
h e r e  by s u b s t i t u t i o n s  o f  t h e  v a r i a b l e s  

o X j R o  ' = t V~-~R-o, x~ = 
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